
Journal of Sound and <ibration (2000) 236(5), 901}903
doi:10.1006/jsvi.1999.2726, available online at http://www.idealibrary.com on
ANALYSIS OF A FINITE-DIFFERENCE SCHEME FOR A LINEAR
ADVECTION}DIFFUSION}REACTION EQUATION

R. E. MICKENS

Department of Physics, Clark Atlanta ;niversity, Atlanta, GA 30314, ;.S.A.

(Received 7 October 1999)
An important class of physical phenomena in acoustics, #uid dynamics, and the transport of
contaminants can be modelled by the partial di!erential equation [1}3]
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where j and d are positive parameters, and the velocity of propagation has been normalized
to unity. The main purpose of this letter is to extend the previous results of Mickens [4]
which corresponds to placing j"0 in equation (1). In particular, a new "nite-di!erence
scheme is constructed using the concept of &&exact'' and &&best'' di!erence models as
formulated in Mickens [5]. An analysis of stability for the scheme is done based on the
application of a positivity constraint [6]. The details of the construction procedure are not
provided since they follow directly from the results given in references [4}6].

Denote the space and time step sizes, respectively, by Dx and Dt, and the discrete
approximation to u(x, t) by un
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integers. The "nite-di!erence scheme selected for equation (1) is
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This discrete model was obtained by "rst constructing the &&exact'' "nite-di!erence scheme
for
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see Mickens [5]; the result is
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where
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and Dt"Dx is required. Observe that for small jz, equation (5) becomes

/(z)"z#O(jz2). (6)
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The term on the right-hand side of equation (1) can be discretely modelled by
a central-di!erence scheme for the second derivative [5, 6], i.e.,
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Combining the results of equations (4) and (7) gives the following non-standard
"nite-di!erence model for equation (1):

un`1
m

!un
m

/ (Dt)
#

un
m
!un

m~1
/ (Dx)

#jun
m~1

"d C
un
m`1

!2un
m
#un

m~1
(Dx)2 D . (8)

To simplify the analysis, replace the function / (z) by its "rst approximation, / (z)"z; this
holds if 0(jz@1. Thus, equation (8) takes the form given by equation (2).

Making the de"nitions
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equation (8) can be rewritten to the form
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All the solutions to equation (10) will be stable and satisfy a max}min condition if the
coe$cients to the un

m
and un

m~1
terms are non-negative [6]. Such a &&positivity'' condition

implies that
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One way to satisfy the two conditions of equation (11) is to "rst require

1!b!2R"R. (12)

Substituting the results of equation (9) into equation (12) gives a relationship between the
step sizes
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Note that when d"0, the proper result Dt"Dx is obtained.
Given equation (13), does the second inequality of equation (11) hold? Note that
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where the last equality de"nes the function y(Dx). A direct calculation shows that y (Dx)'0
for
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where (Dx)
`

is the positive root of y (Dx) and is given by
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In summary, a non-standard "nite-di!erence scheme [5] has been constructed for a linear
advection}di!usion}reaction partial di!erential equation. The numerical solutions of the
scheme are stable and satisfy a max}min condition, just as the original di!erential equation.
Written out, this explicit scheme for equation (1) is
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where equation (13) gives the relation between the step sizes,
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and Dx is restricted by the condition of equations (15) and (16).
All of the analysis given above could be done with the approximation of equation (6). The

only change would be a more complex relationship between the step sizes.
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